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Abstract
The pair distribution function g(r) ≡ g(x, y, z) and the radial pair distribution
function g(r) of ions in body-centred-cubic and face-centred-cubic Coulomb
crystals are calculated within the harmonic-lattice (HL) approximation in a wide
temperature range, from the high-temperature classical limit (T � h̄wp,wp

being the ion plasma frequency) to the low-temperature quantum limit (T �
h̄wp). In the classical limit, g(r) is also calculated by the Monte Carlo (MC)
method. MC and HL results are demonstrated to be in good agreement. With
decreasing T, the correlation peaks of g(r) and g(r) become narrower. At
T � h̄wp they become temperature independent (determined by zero-point
ion vibrations).

PACS numbers: 52.27.Lw, 52.27.Gr

1. Introduction

A model of a Coulomb crystal of point charges in a uniform compensating background of
opposite charge is well known in many branches of physics. For instance, it is used in solid
state physics to describe electron–hole plasma (e.g., [1]), in plasma physics to describe dusty
plasmas and ion plasmas in Penning traps (e.g., [2]); it is widely used in astrophysics as a model
of crystals of ions in the cores of white dwarfs and the envelopes of neutrons stars (e.g., [3]).
For certainty, we consider a crystal of ions immersed in a uniform electron background. We
analyse the pair distribution function of ions g(r) ≡ g(x, y, z) and the radial pair distribution
function g(r) (i.e., g(r) averaged over orientations of r).

Both distribution functions are needed for calculating the thermodynamic and kinetic
properties of the crystals. In particular, they determine the Coulomb energy of the system,
and they are required for a strict description of processes involving ions. The structure factors
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(which are the Fourier transforms of the pair distribution functions, see equation (1)), are
needed to calculate electron transport properties in Coulomb crystals (e.g., [4, 5]).

The functions g(r) and g(r) can be determined numerically: by classical Monte Carlo
(MC) e.g., [6] and references therein, molecular dynamics (MD) e.g., [7], and also by path-
integral Monte Carlo (PIMC) e.g., [8], but numerical schemes require very large computer
resources. As a result, reliable calculations of g(r) have been performed only by MC for
classical body-centred-cubic (bcc) and face-centred-cubic (fcc) Coulomb crystals (T � h̄wp)
at r/a � 7, where wp =

√
4πe2Z2n/M is the ion plasma frequency, a = (4πn/3)−1/3 is the

ion sphere radius, Ze is the ion charge, M is its mass and n is the number density of ions.
Recently, Baiko et al [4, 9] constructed a semi-analytic model for calculating the

correlation functions of Coulomb systems using the harmonic-lattice (HL) approximation
(e.g., [10]). This model is much simpler for practical realization. It does not take into account
exchange terms but describes correctly other quantum effects.

Baiko et al [9] compared the HL function g(r) with MC results for classical bcc crystals
(T � h̄wp). The agreement was very good for 1.5 � r/a � 7.3. In addition, the HL g(r)

was calculated for a quantum bcc crystal at one particular temperature T = 0.1 h̄wp. Here,
we present the HL calculations of g(r) and g(r) for bcc and fcc crystals. We also present
more accurate MC g(r) for classical crystals and study the HL g(r) and g(r) in the quantum
and intermediate (classical–quantum) cases.

2. Harmonic-lattice method

The HL formalism has been known for a long time (e.g., [10]). We discuss its implementation
for Coulomb crystals (e.g., [4, 9, 10]). As can be shown, e.g., from the results of Baiko et al
[4], the static ion–ion structure factor is given by

S(k) =
∑
R

eik·R−2W(k)+vαβ(R)kαkβ − (2π)3nδ(k) (1)

where the sum is over direct lattice vectors R, e−2W(k) is the Debye–Waller factor, and

W(k) = h̄k2

2m

〈
1

wν

(
n̄ν +

1

2

)〉
ph

(2)

vαβ(R) = 3h̄

2m

〈
eναeνβ

wν tanh(zν/2)
eiq·R

〉
ph

. (3)

Here, ν ≡ (q, s) denotes phonon branches; q,eν and wν are, respectively, the phonon wave
vector, polarization vector and frequency; n̄ν = (ezν − 1)−1 is the mean number of phonons
in a mode ν, zν = h̄wν/T . The brackets 〈· · ·〉ph denote averaging over the phonon spectrum,
which can be performed numerically, e.g., [5]. Equation (2) is exact at least for bcc and fcc
crystals. For these crystals, W(k) = r2

T k2/6, where rT is the rms displacement of a vibrating
ion.

We are interested in the pair distribution function

g(r) = 1 +
1

n

∫
dk

(2π)3
[S(k) − 1] e−ik·r. (4)

Using equation (1) we have

g(r) = 1

n

∑
R

′ ∫ dk

(2π)3
eik·(R−r)−2W(k)+vαβ(R)kαkβ . (5)
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Figure 1. g(r) as a function of x and y in units of basic cube lengths at z = 0 for a classical fcc
crystal at � = 180. The bottom plane shows isolines of g(r).

The prime over the sum means that the central (R = 0) lattice vector is excluded. It is natural
to introduce the matrix Vαβ(R) = r2

T δαβ/3 − vαβ(R) and its inverse: Nαβ(R) = (V −1)αβ .
Integrating then over k we obtain the expression convenient for numerical evaluation

g(r) =
∑
R

′
√

N(R)

8π3/2n
e−Nαβ(R)(Rα−rα)(Rβ−rβ )/4 (6)

where N(R) = det{Nαβ(R)}. Thus, g(r) is the sum of (typically narrow) Gaussian peaks
centred at direct lattice vectors R.

Now the radial pair distribution function is

g(r) = 1

4π

∫
d�g(r) =

∑
R

′
gR(r) (7)

where d� is the solid angle element in the direction of r, and gR(r) is the contribution from
an ion in a lattice site R. Using equation (6) one can obtain several representations of gR

which we do not present here.
The distribution functions g(r) and g(r) depend on the lattice type and two parameters:

the classical ion-coupling parameter � = Z2e2/(aT ) and the quantum parameter θ = h̄wp/T

that measures the importance of zero-point lattice vibrations. It is also useful to introduce a
density parameter �q = Z2e2/(ah̄wp) = �/θ .

3. Results

Figure 1 shows the HL g(r) for a classical fcc Coulomb crystal at � = 180 (i.e., close to the
melting value �melt ≈ 175; see, e.g., [11]). Vector r varies in the plane containing lattice sites.
One can observe Gaussian correlation peaks centred at these lattice sites. The peaks are high
and narrow, i.e., they do not overlap. The peak widths are determined by thermal vibrations of
ions in a lattice. The plane at the bottom of the figure displays isolines of g(r). The isolines
for neighbouring ions (close to the origin of the coordinate system), turn out to be ellipsoidal,
but they become circular for distant ions.
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Figure 2. Pair distribution functions for fcc crystal at �q = 1800 and four values of θ . Left panel:
g(r) in direction (1, 1, 0). Right panel: radial distribution g(r).

The left panel of figure 2 exhibits g(r) at the density parameter �q = 1800 as a
function of r in one direction x = y, z = 0 for four values of the quantum parameter:
θ = 0.1242, 0.4548, 1.666 and 300. The two lowest values of θ correspond to the classical
limit, the third value is intermediate, while the highest θ corresponds to the quantum limit.
One can see the two closest correlation peaks and the wing of the third one; g(r) varies with r
by many orders of magnitude; the values of g(r) outside the peaks are extremely small.

In a classical crystal (θ � 1) the pair distribution is actually determined by the only
parameter � = �qθ . The peak heights grow with decreasing T (increasing θ and �) as ∝ �3/2,
and the peak widths decrease as �−1/2.

In the quantum regime, the rms ion displacements are determined by zero-point ion
vibrations, independent of temperature. The pair distribution becomes ‘frozen’ (temperature
independent) being solely determined by the density parameter �q. The peak heights in this
regime scale as �

3/2
q and the peak widths scale as �

−1/2
q .

The right panel of figure 2 presents HL g(r) calculated for the same parameters as on the
left panel. The peak heights of g(r) are naturally much lower than those of g(r) because of
averaging over directions of r. The evolution of g(r) with increasing θ (i.e., with decreasing
T at a given density) reflects the evolution of g(r): the peaks are seen to become higher and
narrower due to decreasing rms amplitude, rT , of ion vibrations. In the classical regime, the
peak heights evolve as

√
�, and the peak widths as �−1/2. In the quantum crystal g(r) is

independent of T; the peaks acquire their maximum heights and minimum widths (the heights
behave as

√
�q and the widths as �

−1/2
q ).

If we decrease the number density of ions (equivalently, increase �q) the quantum peaks
will become higher and narrower. In contrast, if we were to increase the number density
of ions the peaks in the quantum regime would become smaller and broader. At very high
densities they would start overlapping. Under these conditions, our consideration would fail
because the exchange effects which we ignore would become important. Note that under these
conditions zero-point ion vibrations may be sufficiently strong to prevent the crystallization
of Coulomb liquid (e.g., [3]).

In figure 3 we compare the HL g(r) in the classical limit with the results of the extensive
MC simulations. The MC method is described, e.g., in [6]. The figure shows three sets of
calculated g(r) data for bcc and fcc crystals at � = 800. The solid line represents the HL
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Figure 3. g(r) for classical bcc (left panel) and fcc (right panel) Coulomb crystals at � = 800.
Filled and open dots show MC results with larger and lower numbers of particles N; solid line: HL.

fcc 

Figure 4. Radial pair distribution function of an fcc crystal at � = 800 and θ = 0.1 (thin lines)
and 10 (thick lines) in three intervals of r up to r = 400 a.

curve. Open circles in the left-hand panel exhibit MC data obtained with N = 686 particles
over nearly 108 MC configurations already reported by Baiko et al [9]. The MC results for
g(r) are limited to half the size of the basic cell containing the N charges due to the bias from
particles in the image cell adjacent to the basic cell. For N = 686, the basic cell length is
about 14.2 a. Accordingly, the MC g(r) for this simulation is valid only up to r ≈ 7.3 a while
g(r), given by the HL model, remains accurate as r → ∞. However, as discussed in [9], at
small particle separations, r � 1.5 a, the HL model is less accurate than the MC (and MC
data are available down to r � 1.1 a). Filled circles show our new MC g(r) obtained with
N = 1024 particles. As expected, larger N extends the validity of MC results from r ≈ 7.3 a

to r ≈ 8.3 a.
The right-hand panel of figure 3 is similar to the left panel but refers to the fcc crystal.

We present the results of our two MC runs obtained with N = 500 and 864. In the first case,
the MC g(r) is accurate at r � 6.4 a while in the second case it is accurate to about r � 7.7 a.
The peaks for the fcc lattice are slightly more pronounced than those for the bcc lattice.

Let us emphasize once more the simplicity of the HL model which allows us to calculate
g(r) and g(r) to very large r using very modest computer resources. For instance, in figure 4
we present HL g(r) for the fcc crystal at � = 800 and two values of θ = 0.1 (classical regime)
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and 10 (quantum regime) evaluated up to r = 400 a. The peak structure is quite pronounced
even for r ∼ 400 a although the peak heights decrease gradually with r. The classical peaks
are higher and narrower (for a fixed �).

4. Conclusions

We have calculated the pair distribution functions g(r) and g(r) in the HL approximation for
bcc and fcc Coulomb crystals in a wide temperature range, from the classical high-temperature
limit to the quantum low-temperature limit. In the classical limit, we have compared the HL
g(r) with the results of MC calculations at different numbers of ions N and find a good
agreement of MC and HL results.

Let us stress that the quantum effects cannot be taken into account in a classical MC
scheme. They can be explored using PIMC but such studies require very powerful computers.
At present, the HL model gives the only simple method for exploring ion correlations in
quantum Coulomb crystals.
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